DPP - 5 (Current Electricity)

Video Solution on Website :-

https://physicsaholics.com/home/courseDetails/98

Video Solution on YouTube:- https://youtu.be/d5zMrmNvalE

Written Solution on Website:-

Q 1. In figure point O is maintained zero volt and A, B, C and D are maintained at V volt. If all resistors have same resistance R, then current through branch

(a) OP is $\frac{2 V}{3 R}$
(b) PQ is zero
(c) QR is $\frac{V}{3 R}$
(d) SD is $\frac{\mathrm{V}}{3 R}$

Q 2. In the shown wire frame, each side of a square (the smallest square) has a resistance R. The equivalent resistance of the circuit between the points A and B is

(a) R

(b) $2 R$
(c) $4 R$
(d) $8 R$

Q 3. Figure consists two squares made of uniform wire of resistance per unit length λ. Find out equivalent resistance between A and B. Side of large square is a.

(a) $\frac{(\sqrt{2}+1) \lambda a}{2}$
(b) $\frac{\lambda a}{\sqrt{2}}$
(c) $\frac{\sqrt{2} \lambda a}{3}$
(d) $\sqrt{2} \lambda a$

Q 4. A network of nine conductors connects six points A, B, C, D, E and F as shown. The figures denote resistances in ohms. The equivalent resistance between A and D is

(a) 1Ω
(b) 2Ω
(c) 3Ω
(d) 4Ω

Q 5. A frame made of thin homogeneous wire is shown in figure. Assume that the number of successively embedded equilateral triangle with sides decreasing by half tends to infinity. The side AB has a resistance R_{0}. Find the equivalent resistance between A and B .

(a) $\left(\frac{\sqrt{5}-1}{3}\right) R_{0}$
(b) $\left(\frac{\sqrt{3}-1}{3}\right) R_{0}$
(c) $\left(\frac{\sqrt{7}-1}{2}\right) R_{0}$
(d) $\left(\frac{\sqrt{7}-1}{3}\right) R_{0}$

Q 6. There is an infinite wire grid with square cells. The resistance of each wire between neighbouring joint connections is equal to R. Find the resistance of the whole grid between points A and B.

(a) R
(b) $R / 2$
(c) $R / 3$
(d) $R / 4$

Q 7. Effective resistance between A and B is

(a) $35 / 72 \mathrm{ohm}$
(b) $72 / 35 \mathrm{ohm}$
(c) $17 / 36 \mathrm{ohm}$
(d) $36 / 17$ ohm

Q 8. Effective resistance between A and B is
(a) 2 ohm
(b) 3 ohm
(c) 60 hm
(d) 4 ohm

Q 9. Find the equivalent resistance of the circuit between points A and B shown in figure is: (each branch is of resistance $=1 \Omega$)

(a) 3 ohm
(b) $17 / 30 \mathrm{ohm}$
(c) $10 / 23 \mathrm{ohm}$
(d) $22 / 35 \mathrm{ohm}$

Q 10. The figure shown a network of resistor each having value 12Ω. Find the equivalent resistance between points A and B.

(a) 6 ohm
(b) 3 ohm
(c) 9 ohm
(d) 2 ohm

Q 11. Calculate equivalent resistance of the network between points A and D.

(a) $3 R / 5$
(b) $5 R / 7$
(c) R
(d) $2 R$

Answer Key

Q. 1 a, b, d	Q. 2 b	Q. 3 b	Q. 4 a	Q. 5 d	
Q. 6 b	Q. 7 b	Q. 8 c	Q. 9 d	Q. 10 c	
Q. 11 c					

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI ₹56,000

18 months

No cost EMI

12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
Study Planner

To be paid as a one-time payment View all plans
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 5 Current :Wheat Stone Bridge,Symmetric Circuits
By Physicsaholics Team
Q.1) In figure point O is maintained zero volt and A, B, C and D are maintained at V volt. If all resistors have same resistance R, then current through branch

$$
\underbrace{V_{P}=V_{Q}=V_{R}=V_{S}}_{\text {by symmetry }}
$$

(a) OP is $\frac{2 V}{3 R}$
(b) PQ is zero
(c) QR is $\frac{V}{3 R}$
using junction law
$a+P \rightarrow$
(d) SD is $\frac{V}{3 R}$

$$
\begin{aligned}
\frac{V-V_{0}}{R}+\frac{V-V_{0}}{R} & =\frac{V_{0}-0}{R} \\
2 V-2 V_{0} & =V_{0} \\
3 V_{0} & =2 V \Rightarrow
\end{aligned}
$$

$$
\Rightarrow V_{0}=\frac{2 V}{3}
$$

$$
\begin{aligned}
& i=\frac{V-2 V / 3}{R}=\frac{V}{3 R} \\
& 2 i=\frac{2 V}{3 R}
\end{aligned}
$$

Q.2) In the shown wire frame, each side of a square (the smallest square) has a resistance R. The equivalent resistance of the circuit between the points A and B is :

$$
R_{\text {lff }}=\frac{R}{2}+R+R+R / 2
$$

(a) R
(b) $2 R$
(c) 4 R
(d) 8 R
Q.3) Figure consists two squares made of uniform wire of resistance per unit length λ. Find out equivalent resistance between A and B. Side of large square is a_{A}

$$
\begin{aligned}
& P_{1} \& P_{2} \text { are at rams potential } \\
& S_{1} \& S_{2}
\end{aligned}
$$

(a) $\frac{(\sqrt{2}+1) \lambda a}{2}$
(b) $\frac{\lambda a}{\sqrt{2}}$
(c) $\frac{\sqrt{2} \lambda a}{3}$
(d) $\sqrt{2} \lambda a$

$$
R_{y f f}=\left(a \delta+\frac{a \delta \cdot a \delta / \sqrt{2}}{\Delta \lambda+a \lambda / \sqrt{2}}\right) \frac{1 / 2}{2}
$$

$$
\begin{aligned}
R_{\mathrm{rff}} & =\frac{a s}{2}\left[1+\frac{1}{\sqrt{2}+1}\right] \\
& =\frac{a s}{2}\left[1+\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}\right] \\
& =\frac{a s}{2}[1+\sqrt{2}-1] \\
& =\frac{a s}{\sqrt{2}}
\end{aligned}
$$

Ans. b
Q.4) A network of nine conductors connects six points A, B, C, D, E and F as shown. The figures denote resistances in ohms. The equivalent resistance between A and D is

$$
V_{B}=V_{C}, \quad V_{E}=V_{F}
$$

$$
R_{0}+\frac{R R_{0}}{2 R_{0}+R}=\frac{2 R_{0}^{L}+R R_{0}+R R_{0}}{2 R_{0}+R}=\frac{2 R_{0}\left(R_{0}+R\right)}{2 R_{0}+R}
$$

Q.5) A frame made of thin homogeneous wire is shown in figure. Assume that the number of successively embedded equilateral triangle with sides decreasing by half tends to infinity. The side AB has a resistance R_{0}. Find the equivalent resistance between A and B.
effective resistance b/w $A \& B=R=$?
(a) $\left(\frac{\sqrt{5}-1}{3}\right) \mathrm{R}_{0}$
(b) $\left(\frac{\sqrt{3}-1}{3}\right) R_{0}$
(C) $\left(\frac{\sqrt{7}-1}{2}\right) \mathrm{R}_{0}$
(d) $\left(\frac{\sqrt{7}-1}{3}\right) R_{0} \quad \frac{R_{0} R / 2}{R_{0}+R / 2}=\frac{R R_{0}}{2 R_{0}+R}$

$$
\frac{1}{R}=\frac{1}{R_{0}}+\frac{2 R_{0}+R}{2 R_{0}\left(R_{0}+R\right)}
$$

$$
\begin{aligned}
\frac{1}{R}-\frac{1}{R_{0}} & =\frac{2 R_{0}+R}{2 R_{0}\left(R_{0}+R^{2}\right)} \\
\Rightarrow \quad \frac{R_{0}-R}{R R_{0}} & =\frac{2 R_{0}+R}{2 R_{0}\left(R_{0}+R\right)} \\
\Rightarrow \quad 2\left(R_{0}^{2}-R^{2}\right) & =2 R_{0} R+R^{2} \\
\Rightarrow \quad & =3 R^{2}-2 R_{0}^{2}+2 R R_{0} \\
R & =\frac{2 R_{0}+\sqrt{4 R_{0}^{2}+24 R_{0}^{2}}}{6}=\frac{-2 R_{0}+2 R_{0} \sqrt{7}}{6} \\
= & \frac{R_{0}}{3}(\sqrt{7}-1)
\end{aligned}
$$

Ans. d
Q.6) There is an infinite wire grid with square cells. The resistance of each wire between neighbouring joint connections is equal to R. Find the resistance of the whole grid between points A and B.
(a) R
(b) $R / 2$
(c) $R / 3$
(d) $\mathrm{R} / 4$

for wire $A B$

$$
\begin{aligned}
& \varepsilon=\frac{i}{2} R . \\
& \frac{\varepsilon}{i}=R / 2
\end{aligned}
$$

Total Emf applied

$$
=\varepsilon
$$

$$
R_{i f f}=\frac{\varepsilon}{i}=\frac{R}{2}
$$

Q.7) Effective resistance between A and B is
(a) $35 / 72 \mathrm{ohm}$
(b) $72 / 35 \mathrm{ohm}$

(c) $17 / 36 \mathrm{ohm}$
(d) $36 / 17 \mathrm{ohm}$

To find $\operatorname{cffective~resistance~}$

$$
\begin{gathered}
-3 i_{1}+4\left(i-2 i_{1}\right)+6\left(i-i_{1}\right)=0 \\
17 i_{1}=10 i \\
i_{1}=\frac{10 i}{17}
\end{gathered}
$$

$$
\begin{aligned}
& i_{1}=10 i / 17 \\
&+\varepsilon-6\left(i-i_{1}\right)-3 i_{1}=0 \\
& \Rightarrow \varepsilon-6 \times \frac{7}{17} i-\frac{30}{17} i=0 \Rightarrow \varepsilon=\frac{72}{17} i \\
& \Rightarrow R_{C D}=\frac{\varepsilon}{i}=\frac{72}{17} 0 h_{m} \\
& \frac{1}{R_{A B}}=\frac{1}{4}+\frac{17}{72}=\frac{18+17}{72}=\frac{35}{72} \\
& R_{A B}=\frac{72}{35} \Omega .
\end{aligned}
$$

Ans. b
Q.8) Effective resistance between A and B is
(a) 2 ohm

(b) 3 ohm
(c) 6 ohm
(d) 4 ohm

$$
\frac{R \times R / 2}{R+R / 2}=\frac{R}{3} \quad \frac{R \times R / 3}{R+R / 3}=\frac{R}{4}
$$

Q.9) Find the equivalent resistance of the circuit between points A and B shown in figure is: (each branch is of resistance $=1 \Omega$)
(a) 3 ohm
(b) $17 / 30$ ohm

(c) $10 / 23 \mathrm{ohm}$
(d) $22 / 35 \mathrm{ohm}$

Q.10) The figure shown a network of resistor each having value 12Ω. Find the equivalent resistance between points A and B .
(a) 6 ohm
(b) 3 ohm
(c) 9 ohm
(d) 2 ohm

$$
V_{p_{1}}=V_{p_{2}} \& V_{s_{1}}=V_{S_{2}}
$$

Q.11) Calculate equivalent resistance of the network between points A and D .
(a) $3 \mathrm{R} / 5$

B
(b) $5 \mathrm{R} / 7$
(c) R
(d) 2 R

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/98

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/d5zMrmNvalE
https://physicsaholics.com/note/notesDetalis/53

Chalo Nikis

